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A B S T R A C T   

Rumor detection in social media platforms is of critical importance owing to the widespread dissemination and 
impact of false information. Conventional approaches to rumor detection frequently rely on labor-intensive 
manual fact-checking or handcrafted features that may not adequately account for the complex nature of 
rumor propagation. To overcome these limitations, recent studies in deep learning, such as the recurrent neural 
network-based method and natural language processing techniques, have shown promise in capturing sequential 
patterns and analyzing textual content. However, these approaches often overlook the valuable information 
embedded in the global structural characteristics of rumor propagation. Herein, we propose a novel approach, 
named memory-augmented Transformer with graph convolutional networks (GCNs-MT), for rumor detection on 
social platforms. Our model integrates long short-term memory cells and the multi-head attention mechanism in 
Transformers to capture local dependencies and global dependencies in the propagation of rumors. By incor-
porating GCNs, a powerful deep learning framework for structured data, we aim to leverage the structural in-
formation of rumor propagation for improved detection performance. Additionally, we construct a Chinese 
dataset encoded and embedded by pretrained word embeddings (Word2Vec and bidirectional encoder repre-
sentations from transformers [BERT]) based on real-world tweets from Weibo. Extensive evaluations on self- 
constructed Chinese and curated benchmark English datasets demonstrate the effectiveness of GCNs-MT in 
detecting and combating misinformation in social media platforms. The proposed GCNs-MT framework offers a 
comprehensive and efficient solution for rumor detection, addressing the challenges in social platforms posed by 
the rapid dissemination and complex nature of rumors.   

1. Introduction 

Rumors, characterized as unverified or false information circulating 
among users, give rise to grave concerns regarding the integrity and 
reliability of online discourse [1]. Rumors’ propensity to swiftly 
disseminate and exert influence over public opinion necessitates the 
development of robust and efficient detection mechanisms to effectively 
address the challenges they pose [2]. Traditional methods without ef-
ficiency, such as manual fact-checking, are beset by time constraints, 
resource intensiveness, and an inherent inability to keep pace with the 
rapid dissemination of rumors [3,4]. Consequently, the emergence of 
advanced computational techniques and machine learning models has 
garnered considerable attention as a promising avenue for combating 
the pernicious effects of rumor propagation. 

Conventional machine learning methods for rumor detection have 
relied on manual feature engineering, encompassing user 

characteristics, textual content, and propagation patterns. These fea-
tures serve as inputs to train supervised classifiers, including decision 
trees, random forests (RF), and the support vector machine (SVM) [5,6]. 
Although these approaches have demonstrated some effectiveness, their 
reliance on labor-intensive and time-consuming handcrafted feature 
engineering remains a significant limitation. In addition, these hand-
crafted features may not capture the high-level representations neces-
sary to accurately capture the complex nature of rumor propagation and 
dispersion [3,4]. 

To address these limitations, recent advancements in deep learning 
have been utilized to capture intricate representations from various 
sources, including rumor propagation paths and networks. Remarkably, 
recurrent neural network (RNN)-based models have demonstrated their 
efficacy in capturing sequential patterns within the nature of rumor 
propagation [7,8], enabling robust rumor screening [9–11]. Moreover, 
the integration of natural language processing (NLP) techniques, 

* Corresponding author. 
E-mail address: lixia@ccnu.edu.cn (X. Li).  

Contents lists available at ScienceDirect 

Knowledge-Based Systems 

journal homepage: www.elsevier.com/locate/knosys 

https://doi.org/10.1016/j.knosys.2024.111625 
Received 26 July 2023; Received in revised form 1 February 2024; Accepted 7 March 2024   

mailto:lixia@ccnu.edu.cn
www.sciencedirect.com/science/journal/09507051
https://www.elsevier.com/locate/knosys
https://doi.org/10.1016/j.knosys.2024.111625
https://doi.org/10.1016/j.knosys.2024.111625
https://doi.org/10.1016/j.knosys.2024.111625
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.111625&domain=pdf


Knowledge-Based Systems 292 (2024) 111625

2

exemplified by pretrained word embeddings, such as Word to Vector 
(Word2vec) [12] and Bidirectional Encoder Representations from 
Transformers (BERT) [13], has been investigated to augment the 
model’s capacity for analyzing and comprehending the semantic context 
of textual data in the context of rumor detection tasks [14,15]. Due to 
the powerful NLP capabilities of Transformers, several models based on 
Transformers have been applied to rumor detection tasks [16,17]. The 
multi-head attention mechanism in Transformers enables the models to 
capture long-range dependencies and effectively reason over the entire 
input sequence [13]. This capability enhances the models’ ability to 
detect subtle patterns and linguistic cues that distinguish rumors from 
factual information [16]. By synergistically incorporating these tech-
niques, the overall performance of rumor detection systems can be 
significantly enhanced by effectively harnessing the rich textual infor-
mation inherent in social media posts. 

However, recognizing that existing approaches often overlook the 
valuable information embedded in the structural characteristics of 
rumor propagation is essential [18–20]. The dynamics of social media 
events unfold through the interactions of users, who have the ability to 
engage with content by retweeting and commenting. These interactions 
give rise to a propagation network, wherein each user and their actions 
contribute to the evolving structure around a particular event. This 
network serves as a valuable source of information and insights into the 
characteristics of the event’s propagation. The features embedded 
within this network structure are instrumental in understanding the 
patterns of information dissemination, user engagement, and the overall 
impact of the event in the online space. These structural features serve a 
crucial role in comprehending the underlying dynamics and patterns of 
rumor spread [21,22]. In response to this challenge, researchers have 
turned to the incorporation of graph convolutional networks (GCNs), a 
potent deep learning paradigm renowned for its ability to extract intri-
cate high-level representations from structural data. This emerging 
approach presents a promising avenue in the domain of rumor detection. 
GCNs are adept at modeling intricate global structural relationships 
within graphs or trees, rendering them ideal for capturing the nuanced 
nature of rumor propagation. Several researchers have constructed the 
concept of propagation networks to capture the structural features of 
content propagation [3,22]. These networks exhibit a tree-structured 
network, encompassing the event itself, the user, the event–user inter-
action, and the user–user relationships. Such a network structure not 
only aligns with the application approach of GCNs but also reflects the 
exogenous and structural information associated with rumor propaga-
tion in real-world scenarios [22,23]. 

In this study, we present a novel approach, namely GCNs with 
memory-augmented Transformer (GCNs-MT), designed for rumor 
detection on social platforms. The proposed approach harnesses the 
strength of GCNs for node-level information convolution and integra-
tion. At the core of our model lies a unique design, the memory- 
augmented Transformer, which combines RNN cells and the multi- 
head attention mechanism in transformer architecture [24,25]. This 
fusion allows our model to capture both local and global dependencies 
from the rumor propagation pattern, which essentially transforms the 
current local representation into the global representation by the 
self-attention mechanism of Transformers. By integrating memory and 
Transformer-based architectures, our model excels at reasoning over the 
rich contextual information embedded in social media data. The mem-
ory component facilitates the retention and retrieval of important in-
formation from previous interactions while the Transformer component 
allows for effective information processing and aggregation. The main 
contributions of our study are as follows:  

• A unique recurrent manner is designed to retain global graph-level 
information and generate global dependencies across all networks. 
The multi-head attention mechanism transforms local graph repre-
sentation into a global graph representation.  

• We introduce a pioneering approach for rumor detection, GCNs-MT, 
which learns structural information about the propagation network 
and captures local and global dependencies of event sequences.  

• We conduct experiments on three real-world datasets in Chinese and 
English corpora to demonstrate the applicability and state-of-the-art 
performance of GCNs-MT and its effectiveness in identifying and 
combating rumors on social platforms. 

2. Related work 

The majority of prior studies on rumor detection have primarily 
focused on feature extraction from text content, user profiles, and 
propagation patterns, utilizing traditional machine learning algorithms 
such as SVM [5,19] and RF [26] classifiers, which rely on handcrafted 
features for low-level detection. However, these approaches suffer from 
low efficiency and limited accuracy in detecting rumors [5,6]. 

In recent years, the exceptional capabilities demonstrated by deep 
learning techniques in extracting high-level feature representations have 
ignited a surge in their ubiquitous application across rumor detection 
studies [2,11]. Ma et al. [27] employed the RNN to capture temporal 
content features for rumor detection. Building upon this work, Chen 
et al. [28] further improved the method by incorporating attention 
mechanisms to derive feature information from textual content using 
attention scores. Similarly, Yu et al. [29] proposed a convolutional 
neural network (CNN)-based approach to capture key features distrib-
uted throughout input sequences and aggregate them to form high-level 
representations. Wang et al. [30] introduced an RCNN model that syn-
ergistically combines RNN and CNN, enabling the capture of semantic 
text features while simultaneously learning sentiment features. Inspired 
by generative adversarial learning methods, Ma et al. [31] utilized 
discriminator models from generative adversarial networks as classi-
fiers, while the corresponding generators were designed to generate 
uncertain or conflicting voices. GRU was employed as an encoder for 
time-series dialogue encoding, resulting in improved results in rumor 
detection. However, several of these methods rely on statistical feature 
extraction from raw text content, overlooking the linguistic aspects of 
the text. To address the influence of rumor semantics on detection ac-
curacy, researchers have explored deep learning architectures from the 
field of NLP in rumor detection. Alkhodair et al. [32] jointly trained a 
Word2Vec model with unsupervised goals for learning word embed-
dings and RNN models with supervised goals for rumor detection. 
Kaliyar et al. [14] proposed FakeBERT, a deep learning method that 
integrates parallel blocks of a single-layer deep CNN framework with 
various kernel sizes and filters, along with BERT, effectively handling 
ambiguity and yielding remarkable results in disinformation detection. 
Furthermore, leveraging the remarkable capabilities exhibited by 
Transformers in language translation, sentiment analysis, and text 
classification within the field of NLP, several studies have incorporated 
Transformers into rumor detection methodologies. Lv et al. [17] intro-
duced a novel approach called TMIF for automatic rumor detection. The 
approach integrates textual and image modalities through interactive 
fusion, using Transformers to capture the multilevel dependencies be-
tween different modalities while mitigating the impact of heterogeneous 
data. Taking advantage of the powerful natural language generation 
capabilities of Transformers, Ma et al. [16] employed Transformers ar-
chitecture within the generator of a GAN network to enhance post-
generation. Their innovative approach aims to create posts that closely 
resemble the source posts while preserving the authentic propagation 
structure and contextual information. Through adversarial training, the 
model successfully captures low-frequency yet crucial nontrivial pat-
terns, leading to significant improvements in postgenerational quality. 
While these methods analyze content-level, user-level, media-level, and 
temporal-level information, they do not effectively capture 
structure-level features [2,6,33]. 

With the emergence and development of GCNs, numerous re-
searchers have started to leverage the GCN framework to capture 
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structural-level features. Dong et al. [34] introduced a sophisticated 
GCN-based model, referred to as GCNSI, which addresses the chal-
lenging task of identifying multiple rumor sources without relying on 
prior knowledge of the underlying propagation model. Bian et al. [35] 
introduced the Bi-GCN model, which captures the structural information 
of rumor propagation trees through both top-down and bottom-up in-
formation propagation. Lu and Li [36] put forward a novel model named 
GCAN, which leverages convolutional and recursive neural networks 
(RvNN) to acquire user-based representations during forwarding prop-
agation based on user features. Through graph construction to simulate 
potential interactions among users, they effectively employ GCN to learn 
graph-aware representations of user interactions. Sun et al. [37] intro-
duced a novel dual-dynamic GCN that employs two GCNs to capture 
structural information from two distinct time stages. Through the inte-
gration of these networks with a sophisticated temporal fusion unit, the 
model adeptly simulates the dynamic changes in message propagation 
and background knowledge within a unified and cohesive framework. 
These studies exemplify the utility of GCNs in capturing structural fea-
tures for rumor detection. By leveraging the power of GCNs, researchers 
have been able to extract and model the underlying structural charac-
teristics of rumor propagation networks. 

Our proposed model is motivated by prior research in the field and 
leverages NLP techniques, specifically pretrained word embeddings 
(Word2Vec and BERT), for encoding textual content and obtaining high- 
level representations. In addition, we employ GCNs to capture structural 
information at a granular level. To enhance the ability to capture de-
pendencies at a global structural level, we integrate a global structural 
memory module based on long short-term memory (LSTM) and Trans-
former. By ingeniously incorporating a multi-head attention mechanism 
inspired by a Transformer, our model facilitates seamless bidirectional 
interactions between each position in the sequence and the entire 
memory module, facilitating the effective capture of global contextual 
information. This attention mechanism empowers Transformers to 

capture both local and global dependencies, thereby promoting a 
comprehensive understanding of the data. Through the integration of 
these components, our model aims to leverage text content, user pro-
files, and structural information to improve rumor detection perfor-
mance and provide a more comprehensive approach to data analysis. 

3. Rumor detection approach: memory-augmented transformer 
with graph convolutional networks 

In this section, we present our innovative approach, GCNs-MT, for 
rumor detection on social platforms. Leveraging the power of memory 
networks and the multi-head attention mechanism in Transformers, our 
model aims to capture local dependencies and global dependencies in 
the propagation of rumors. By integrating memory and Transformer- 
based architectures, we enhance the ability of our model to effectively 
reason over the rich contextual information embedded in social net-
works. Fig. 1 illustrates the representation of the dataset and the ar-
chitecture of the GCNs-MT, which provides an overview of how the data 
are organized and processed within the model. Moreover, Fig. 2 pro-
vides a more detailed architecture of the two core modules in our model, 
namely the GCNs module and the memory-augmented Transformer. 
These modules play a crucial role in capturing and integrating graph- 
level information for enhanced rumor detection. 

3.1. GCNs module for node-level embedding and graph-level embedding 

As mentioned above, our approach involves preprocessing the raw 
text data and leveraging NLP techniques, specifically Word2Vec and 
BERT, to perform node-level embedding. This embedding process cap-
tures the semantic representation of individual nodes. Subsequently, we 
establish connections between nodes based on their relationships 
(comments, retweets, and other behaviors) to form a graph structure, as 
shown in Fig. 1. In the context of rumor detection, our dataset G = {G1,

Fig. 1. The architecture of GCNs-MT. The left portion of the figure showcases the graph structures comprising root nodes (tweets) and the corresponding node 
feature tensor, accompanied by the corresponding ground-truth labels vector for each graph. On the right side, the process architecture of GNNs-MT is depicted, 
elucidating the sequential flow of operations. 
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G2,⋯,GN} comprises N tree-like propagation networks of tweets. Each 
Gi corresponds to the i th event, where N represents the total number of 
events in the dataset. Specifically, for each Gi, we have Gi = {Xi, Ei}, 
where Xi = {ri, xi

1, xi
2,⋯, xi

ni − 1} denotes the node feature representa-
tions. In addition, Ei = {ei

sd
⃒
⃒s, d= 1, 2,⋯, ni} represents the set of edges, 

capturing the interactions between posts in Gi. Here ri signifies the root 
node representation, xi

j is the j-th leaf node representation, and ei
sd sig-

nifies the interaction between the s-th and d-th nodes in Gi. Moreover, 
for the d-th node responding to an s-th node, we observe a directed edge 
ei

s→ei
d. The total number of posts in Gi is denoted by ni. The set of edges Ei 

can be succinctly represented using an adjacency matrix, 
Ai ∈ {0,1}ni × ni , where each entry ai

sd is defined as 

aisd =

{
1, if eids ∈ Ei

0, otherwise
. (1) 

Moreover, each graph Gi has a corresponding ground-truth label yi ∈

(0,1), where yi = 1 and yi = 0 indicate that the event is classified as a 
rumor and a non-rumor, respectively. The principal objective in the field 
of rumor detection is to train a classifier f: G →Y, where G represents the 
set of events within the dataset and Y corresponds to the set of ground- 
truth labels. The fundamental task of the classifier is to make accurate 
predictions regarding the labels of individual events, taking into 
consideration influential factors such as textual contents, user profiles, 
and the intricate propagation patterns formed by the interrelated posts 
associated with each event. To capture the structural information and 
relationships within the event propagation network, we employ graph 
convolution operations. Specifically, we utilize the GCNs framework to 
perform node-level embeddings and aggregate information across the 
graph. The graph convolution operation can be summarized as follows: 

H = GCNs(X,A) (2)  

where GCN(⋅) refers to a specific graph convolution operation function 
within the aforementioned GCN frameworks, X is the node embedding, 
and A denotes the adjacency matrix. In our study, we leverage three 
popular and efficient GCN frameworks: GCN [38], graph attention 
network (GAT) [39], and GraphSAGE (SAmple and aggreGatE, short for 
SAGE) [40]. In this study, we present a concise exposition of GCN and its 
utility for node-level convolution and embedding. The GCN operation is 
mathematically expressed as follows: 

H(l+1) = σ
(
D− 1

2AD− 1
2H(l)W(l)

)
(3)  

where H(l) denotes the node representations in the l-th layer. The acti-
vation function σ(⋅) (e.g., the ReLU function) is element-wise applied to 
the output. The degree matrix D is a diagonal matrix containing the 
degrees of individual nodes along the diagonal, and W(l) symbolizes the 
learnable weight matrix specific to the l-th layer of the GCN. Notably, 
H(0) corresponds to the initial node feature embedding denoted as X, 
which serves as the input to the first layer of the GCNs module. To 
capture graph-level embeddings, we leverage global pooling techniques 
to aggregate node-level features, enabling the generation of higher-level 
representations at the graph level. Global pooling operations play a 
pivotal role in summarizing information across all nodes within the 
graph, resulting in a condensed graph-level feature. Various pooling 
methods can be employed, such as max pooling, mean pooling, or graph- 
level attention mechanisms. In our model framework, we adopt the 
approach of average pooling, which facilitates the seamless integration 
of node-level information. Let h(l+1)

ij ∈ Rd denote the j-th node feature 
vector of the i th graph in the l-th layer, where d is the hidden dimension. 
Then the global mean pooling operation can be expressed as follows: 

h(l+1)
i =

1
ni

∑ni

j=1
h(l)ij (4)  

H(l+1) = ReLU
(
LayerNorm

(
H(l))) (5)  

where h(l+1)
i ∈ Rd is the pooled graph-level feature vector, and H(l) rep-

resents a set of hidden tensors in the l-th layer, which contains the 
representations of all nodes in certain graphs. The ReLU(⋅) function 
applies element-wise rectification to the aggregated features, while the 
LayerNorm(⋅) operation normalizes the activations within each layer to 
improve model stability and convergence. 

3.2. Memory-Augmented transformer 

The GCNs-MT framework not only leverages the GCNs module to 
capture the structural characteristics of rumor propagation but also in-
tegrates the memory-augmented transformer to facilitate seamless in-
teractions between local and global dependencies of events. Through 
this integration, the model adeptly transforms local sequences into 

Fig. 2. The architecture of GCNs Module and Memory-Augmented Transformer.  
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global representations based on the memory vector, enabling a 
comprehensive and contextually rich understanding of rumor propaga-
tion. The memory-augmented transformer incorporates a memory 
module that utilizes multiple RNN units to capture global structural 
patterns. Specifically, we employ the LSTM [41] cells to retain and up-
date a memory tensor m ∈ Rd, which is designed to capture global de-
pendencies and obtain the global representation of graph-level 
embeddings. The LSTM cell operates over multiple time steps, updating 
the memory tensor based on the current hidden state and the previous 
memory tensor. 

Consider a batch of inputs with a sequence length T. Within this 
batch, the LSTM cell operates on the inputs as if they were sequential 
data, even though they are not temporally related. This cell allows the 
model to process the inputs effectively and capture relevant patterns 
within the dataset. For batch t, the LSTM cell takes as input the hidden 
state h(t) ∈ RT × d and the previous memory tensor m(t− 1), where m(t− 1)

can be considered as a global representation retained and updated by a 
recurrent manner. The LSTM cell equations can be written as follows: 

i(t) = σ
(
h(t)Whi + m(t− 1)Wmi + bi

)
(6)  

f(t) = σ
(
h(t)Whf + m(t− 1)Wmf + bf

)
(7)  

o(t) = σ
(
h(t)Who + m(t− 1)Wmo + bo

)
(8)  

g(t) = tanh
(
h(t)Whg + m(t− 1)Wmg + bg

)
(9)  

c(t) = f(t) ⊙ c(t− 1) + i(t) ⊙ g(t) (10)  

m(t) = o(t) ⊙ tanh
(
c(t)

)
(11)  

where σ(⋅) represents the sigmoid activation function. The memory gate 
(g(t)) is computed based on the current hidden state and the previous 
memory tensor. The memory cell (c(t)) is updated using the input gate 
(i(t)) and forget gate (f(t)), and the memory tensor (m(t)) is obtained by 
applying the output gate (o(t)) to the hyperbolic tangent of the memory 
cell. Similar to the multi-head attention mechanism, we can stack mul-
tiple LSTM cells in a parallel paradigm in a multilabel classification task. 

Next, we use the multi-head attention mechanism to transform the 
current local hidden state into a global hidden state. After obtaining the 
memory tensor, we utilize it as the key and value inputs for the Trans-
former module, while the hidden state h serves as the query input. This 
process allows us to construct a memory-augmented Transformer for 
enhanced rumor detection. The memory tensor is used as the key and 
value inputs for the Transformer module, while the hidden state h serves 
as the query input. The attention weights α(l)c,i are computed by taking the 
dot-product between the query and key vectors and applying a softmax 
function to normalize the scores: 

q(l)c,i = h(l)i W(l)
c,q + b(l)c,q (12)  

k(l)c,i = m(l)
i W

(l)
c,k + b(l)c,k (13)  

α(l)
c,i =

q(l)c,i , k
(l)
c,i

∑M
j=1q

(l)
c,ij, k

(l)
c,ij

(14)  

where 〈q, k〉 = exp
(

qT k̅̅
d

√

)
represents exponential scaled dot-product 

function, d is the hidden size of each head, and M is the number of 
LSTM cells. To the c-th head attention, the hidden state h(l)

i and the 
structural memory feature m(l)

i are transformed into query vector q(l)
c,i ∈

Rd and k(l)
c,i ∈ Rd respectively using different trainable parameters 

W(l)
c,q, W(l)

c,k, b(l)c,q, and b(l)c,k. After performing the multi-head attention 
mechanism, the message aggregation step follows. In this step, we 

transform the structural memory feature m(l)
i into a message vector v(l)c,i 

for each head attention: 

v(l)c,i = m(l)
i Wc,v + b(l)c,v (15)  

ĥ
(l)
i =‖

C
c=1

[
α(l)
c,i v

(l)
c,i

]
(16)  

where the ‖ is the concatenation operation for C head attention. 
Furthermore, we incorporate a residual block [42] between layers to 
prevent model oversmoothing, as shown in Fig. 2. The gating mecha-

nism φ(l)
i controls the contribution of the enriched representation ĥ

(l+1)
i 

relative to the original representation h(l)
i and is computed using the 

sigmoid activation function: 

φ(l)
i = sigmoid

(
h(l)i Wr + b(l)r

)
(17)  

h(l+1)
i = ReLU

(
LayerNorm

([(
1 − φ(l)

i

)
ĥ
(l)
i + φ(l)

i ‖ C
c=1h

(l)
i

]))
. (18) 

Then the graph-level representation h(l+1)
i in the last layer of the 

memory-augmented transformer can be considered as the final basis for 
classification. By applying the gating mechanism and the residual 
connection, the residual block allows the model to selectively combine 
the original representation with the enriched information obtained from 
the attention mechanism, which helps prevent oversmoothing and en-
sures that important information is preserved throughout the layers of 
the memory-augmented transformer. 

3.3. Graph classifier for rumor detection 

Upon completing the memory-augmented transformer processing, 
the model’s output traverses a series of fully connected layers for clas-
sification. The trainable parameters of the model undergo iterative up-
dates via gradient descent, aiming to minimize the cross-entropy loss 
function. Inferring the predicted event label ̂yi entails passing the output 
through a sequence of fully connected layers followed by a softmax 
activation function. Our proposed approach optimizes all model pa-
rameters by minimizing the cross-entropy divergence between the pre-
dicted probability distributions and the ground-truth distributions 
across the entire event dataset. The process can be formulated as follows: 

ŷi = softmax(FC(hi)) (19)  

Li = −
∑D

j=1
yijlogŷij (20)  

where ŷi ∈ RD represents a probability vector containing the predicted 
probabilities for all classes used to predict the label of the i th event, and 
Li represents the cross-entropy loss between the ground-truth label yij 

and the predicted probabilities ŷij. In addition, an L2 regularizer is 
incorporated into the loss function to manage the model’s complexity 
and mitigate overfitting. This regularization term penalizes large values 
of the model parameters. 

4. Experiments 

In this section, we deploy our models to a Chinese dataset con-
structed from real Weibo data and two English corpora benchmark 
datasets built by other researchers. We thoroughly evaluate the accuracy 
and generalization capabilities of our model based on experimental re-
sults. We compare our model against other state-of-the-art baseline 
methods for rumor detection. Furthermore, we performed an ablation 
study to assess the individual contributions of each module in our model 
architecture. The thorough evaluation conducted in this study enables 
us to rigorously assess the efficiency and performance of our proposed 
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model in detecting rumors. 

4.1. Experimental datasets 

We conducted evaluations of our method on three real-world data-
sets, including a self-built Chinese corpus dataset and two benchmark 
English corpus datasets provided by other researchers. The raw data 
were crawled by Ma et al. [27]. In constructing our Chinese corpus 
dataset Weibo, we incorporated three distinct node features: 14-dimen-
sional user profile features, 300-dimensional Word2Vec1 features, and 
768-dimensional BERT2 features extracted from user comments, re-
sponses, and other textual content. Each graph in the dataset represents 
a tree structure that represents an event, with edges denoting retweeting 
or responding behavioral relationships. The ground-truth labels for 
events in our Chinese corpus were provided by the Sina Community 
Management Center (SCMC) ,3 while the ground-truth labels for events 
from Twitter in the two English corpora, curated by other researchers, 
were annotated by well-known rumor detection systems Politifact4 and 
Gossipcop.5 The general statistics for the datasets are shown in Table 1. 

In addition, we made histograms based on the counts of retweets and 
responses as well as the cumulative frequency of events across the three 
datasets, as shown in Fig. 3. The distribution of forwarding and reply 
counts exhibits significant variations among the datasets, which serves 
as a rigorous test to assess the comprehensiveness of our model’s per-
formance. The consistent patterns observed in the cumulative fre-
quencies across the three datasets indicate that the extent of impact 
spread for all events may conform to a specific distribution. 

4.2. Experimental setup 

In our experiments, we evaluated the performance of well-known 
conventional machine learning algorithms, namely RF and SVM. In 
addition, we compared our proposed method with several state-of-the- 
art deep learning methods:  

• Word2Vec-MLP and BERT-MLP: Two classification models based on 
multilayer perceptron (MLP) architecture. These models utilize fea-
tures extracted from pretrained Word2Vec and BERT models, 
respectively, to encode the event representations for classification 
purposes. 

• GCNFN6 [43]: The GCNFN leverages deep geometric learning tech-
niques to model the propagation network in conjunction with textual 
node embedding features for fake news detection. The architecture 
consists of two graph convolutional layers, followed by two fully 
connected layers, and a softmax layer for prediction. 

• RvNN7 [22]: The RvNN is a deep learning method suitable for in-
formation passing in tree-like rumor spreading networks, where 
rumor information is passed and aggregated in a recursive manner.  

• Bi-GCN8 [35]: According to the authors, the method represents the 
first application of GCN in a rumor detection model, incorporating a 
bidirectional propagation structure. 

• UPFD9 [23]: The UPFD is a deep learning model with strong per-
formance in detecting fake news and rumors. This model leverages 
GNN-based techniques and an information fusion framework for 
effective analysis and classification.  

• DCUK10: The DCUK is an innovative parallel stacking approach that 
combines the strengths of GAT, GAT with BERT, and transformer. 
This approach leverages these individual components, learns from 
them, and then seamlessly stitches them together to generate overall 
features for the classification task. 

Our implementation of well-known conventional machine learning 
algorithms is based on the scikit-learn11 library, while the imple-
mentation of deep learning baselines utilizes the PyTorch12 library and 
the PyTorch Geometric (PyG)13 library. We adopt the same train-
–validation–est split (70 %–10 %–20 %) for all models. Our models were 
trained with a consistent graph-level embedding size of 128, a batch size 
of 128, and an L2 regularization weight of 0.001. Learning rates were 
adjusted based on the specific graph convolution methods. For the 
models with graph convolution operations based on GAT and GCN, a 
learning rate of 0.001 was used, while the MT model under SAGE 
convolution used a learning rate of 0.005. To mitigate overfitting, we 
implemented early stopping with patience of 10 epochs during training. 
In addition, due to the specificity of the respective structures of the 
baseline models, we mostly use the same settings as in the open source 
repository of the original authors of the models during the training tests, 
while for the nonopen source models, we use settings similar to those 
used for our model training. In our study, we employ accuracy (Acc.) 
score, F1 score, precision (Prec.) score, and recall (Rec.) score as the 
evaluation metrics to assess the performance of our model on the 
datasets. The evaluation metrics can be calculated as follows: 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(21)  

Precision =
TP

TP+ FP
(22)  

Recall =
TP

TP+ FN
(23)  

F1 =
2 × Precision × Recall

Precision + Recall
(24)  

where TP represents the true positive, TN denotes the true negative, FP 
represents the false positive, and FN represents the false negative. These 
metrics provide a comprehensive evaluation of the models’ performance 
in terms of both correct classification and the trade-off between preci-
sion and recall. 

4.3. Experimental results and performance 

As shown in Tables 2–4, our meticulous analysis unequivocally re-
veals the pronounced supremacy of deep learning methodologies 

Table 1 
General statistics for the three datasets.  

Identification Agency Twitter Weibo 
Dataset Politifact Gossipcop SCMC 

#Rumors 157 2732 2313 
#Non-rumors 157 2732 2351 
#Graphs 314 5464 4664 
#Total Nodes 41,054 314,262 2,856,741 
#Total Edges 40,740 308,798 2,183,388 
#Avg. Nodes per Graph 131 58 613 
#Avg. Edges per Graph 130 57 612  

1 https://spacy.io/models/zh#zh_core_web_lg  
2 https://github.com/jina-ai/clip-as-service  
3 https://service.account.weibo.com/  
4 https://www.politifact.com/  
5 https://www.gossipcop.com/  
6 https://github.com/YingtongDou/GCNN 

7 https://github.com/majingCUHK/Rumor_RvNN/  
8 https://github.com/TianBian95/BiGCN  
9 https://github.com/safe-graph/GNN-FakeNews  

10 https://github.com/ltian678/DUCK-code/  
11 https://scikit-learn.org/stable/  
12 https://pytorch.org/  
13 https://github.com/pyg-team/pytorch_geometric 
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compared with conventional machine learning approaches in the 
domain of rumor detection. This marked advantage can be attributed to 
the inherent capacity of deep learning models to adeptly learn and 
harness intricate, nonlinear representations from the underlying data. 
By leveraging the hierarchical architecture of multiple layers, deep 
learning models proficiently capture and exploit complex patterns and 
latent associations present in rumor-related features. This astute 

capability enables them to extract highly discriminative and 
information-rich representations, thus culminating in significantly 
improved and superior detection performance. 

Furthermore, deep learning methods based on MLP architecture 
have significant shortcomings in capturing the complex structure 
inherent in rumor propagation networks. The shortcoming lies in their 
inability to explicitly model the graph structure on which information 
propagation depends, thus hindering their ability to fully understand the 
impact and propagation patterns of rumors. RvNN models, alternatively, 
although they can learn graph structure information representations, do 
so without being able to generate global dependencies, and their purely 
recurrent inference paradigm makes them cost-consuming to apply in 
practice. In contrast, GCN-based models are able to interpret graph 
structures in detail and discern how information spreads throughout the 
network through the learning process. As a result, GCN-based models 
are well able to encapsulate the complex dynamics of rumor propaga-
tion. The hybrid model, which combines BERT, GCNs, and the Trans-
formers, gains a distinct advantage in extracting features from the 
networks of rumor propagation. The model’s adeptness at learning 
pertinent high-level representations results in remarkable performance 
improvements in rumor detection. 

Lastly, our proposed method, which combines GCNs and the 
memory-augmented Transformer, outperforms other GCN-based base-
line approaches across all evaluation metrics. This performance can be 
attributed to the unique strengths of each component. The GCNs module 
captures graph-level dependencies and leverages the structural infor-
mation in the rumor propagation network, enabling effective represen-
tation learning. The memory-augmented Transformer, consequently, 
enhances the ability of the model to capture global dependencies and 

Fig. 3. Histogram of retweets and responses count and cumulative frequency for graphs of the three datasets.  

Table 2 
The results of comparative experiments on the Politifact dataset.  

Model Feature Source Politifact   
Acc. F1 Prec. Rec. 

RF Event Only 0.7557 0.7545 0.7615 0.7477 
SVM Event Only 0.7602 0.7580 0.7685 0.747 
BERT-MLP Event Only 0.7873 0.7983 0.7623 0.8378 
Word2Vec- 

MLP 
Event Only 0.7738 0.7685 0.7905 0.7477 

GCNFN Event+Social Context 0.8235 0.8267 0.8158 0.8378 
RvNN Event+User+Network 0.8145 0.8093 0.8365 0.7838 
Bi-GCN Event+User+Network 0.8281 0.8304 0.8230 0.8378 
UPFD Event+User+Network 0.8371 0.8378 0.8378 0.8378 
DUCK Event+User+Network 0.8416 0.8458 0.8421 0.8495 
GCN-MT 

(ours) 
Event+User+Network 0.8371 0.8235 0.7434 0.8922 

GAT-MT 
(ours) 

Event+User+Network 0.8507 0.8465 0.8053 0.9231 

SAGE-MT 
(ours) 

Event+User+Network 0.8462 0.8411 0.7965 0.8911 

The best result is highlighted in bold, and the second-best result is highlighted in 
underline. 

Table 3 
The results of comparative experiments on the Gossipcop dataset.  

Model Feature Source Gossipcop   
Acc. F1 Prec. Rec. 

RF Event Only 0.8054 0.8037 0.8148 0.7928 
SVM Event Only 0.8190 0.8214 0.8142 0.8288 
BERT-MLP Event Only 0.8481 0.8478 0.8498 0.8458 
Word2Vec- 

MLP 
Event Only 0.8685 0.8675 0.8746 0.8604 

GCNFN Event+Social Context 0.9496 0.9495 0.9498 0.9493 
RvNN Event+User+Network 0.9451 0.9458 0.9348 0.9572 
Bi-GCN Event+User+Network 0.9593 0.9596 0.9554 0.9640 
UPFD Event+User+Network 0.9629 0.9632 0.9577 0.9687 
DUCK Event+User+Network 0.9726 0.9726 0.9703 0.9749 
GCN-MT 

(ours) 
Event+User+Network 0.9712 0.9713 0.9708 0.9718 

GAT-MT 
(ours) 

Event+User+Network 0.9773 0.9773 0.9796 0.9751 

SAGE-MT 
(ours) 

Event+User+Network 0.9825 0.9825 1.0000 0.9655 

The best result is highlighted in bold, and the second-best result is highlighted in 
underline. 

Table 4 
The results of comparative experiments on the Weibo dataset.  

Model Feature Source Weibo   
Acc. F1 Prec. Rec. 

RF Event Only 0.8312 0.8324 0.8266 0.8382 
SVM Event Only 0.8529 0.8522 0.8564 0.8480 
BERT-MLP Event Only 0.8983 0.8980 0.9002 0.8958 
Word2Vec- 

MLP 
Event Only 0.9010 0.9009 0.9023 0.8995 

GCNFN Event+Social Context 0.9375 0.9376 0.9364 0.9387 
RvNN Event+User+Network 0.9593 0.9593 0.9578 0.9608 
Bi-GCN Event+User+Network 0.9721 0.9722 0.9695 0.9749 
UPFD Event+User+Network 0.9746 0.9746 0.9731 0.9761 
DUCK Event+User+Network 0.9825 0.9825 0.9834 0.9816 
GCN-MT 

(ours) 
Event+User+Network 0.9786 0.9787 0.9733 0.9841 

GAT-MT 
(ours) 

Event+User+Network 0.9831 0.9832 0.9890 0.9776 

SAGE-MT 
(ours) 

Event+User+Network 0.9877 0.9878 0.9890 0.9866 

The best result is highlighted in bold, and the second-best result is highlighted in 
underline. 
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incorporate global contextual information, thereby improving its 
discrimination and generalization capabilities. 

We conducted a comparative analysis of our three proposed models: 
GCN-MT, GAT-MT, and SAGE-MT. The performance comparisons are 
illustrated in Table 5, 6 and 7. In the realm of performance evaluation, 
the SAGE-MT model emerges as the standout performer. This supremacy 
is primarily attributed to SAGE’s inductive learning capabilities, which 
excel in capturing higher-order dependencies within expansive rumor 
propagation network graphs and efficiently disseminating information 
throughout the intricate graph structures. The model’s ability to 
encompass a broad array of relationships within the graph structure, 
even in the context of substantial networks, plays a pivotal role in its 
superior performance. Moreover, our evaluation of the GAT-MT model 
reveals that it excels when applied to the Politifact dataset, character-
ized by compact graphs and a scarcity of samples. This observation 
implies that these models exhibit remarkable resilience and capacity to 
perform well in scenarios with limited training data, rendering them 
particularly valuable for constrained data settings. 

Moving on to training efficiency, we observed a notable trend 
wherein the SAGE-MT model consistently outperforms GCN-MT and 
GAT-MT, as visually depicted in Fig. 4. The superior training efficiency 
of SAGE-MT can be attributed to the astute aggregation strategy it em-
ploys through SAGE convolution. By incorporating random sampling 
during the training process, SAGE accelerates computation and 
convergence speed, significantly expediting the learning process. This 
strategic advantage not only streamlines model training but also enables 
the acquisition of high-level representations at an accelerated pace. 

In our comprehensive evaluation, we assessed the models’ sensitivity 
by analyzing the receiver operating characteristic (ROC) curve, as 
visually presented in Fig. 5. The ROC curve provides valuable insights 
into how the models’ performance varies with changing binary 
discrimination thresholds, effectively illustrating the trade-off between 
false positive and true positive rates. The results demonstrate that, in the 
case of large datasets such as Gossipcop and Weibo, there is little 
discernible difference in sensitivity among the three models, and all of 
them exhibit exceptional performance. However, when scrutinizing the 
smaller Politifact dataset, a notable distinction emerges—the GCN-MT 
model exhibits higher sensitivity compared with GAT-MT and SAGE- 
MT. This observation underscores the GCN-MT model’s exceptional 
discriminatory prowess in accurately discerning true from false rumors, 
thereby significantly diminishing the likelihood of false negatives. This 
model may excel at capturing subtle nuances in these smaller networks. 

4.4. Ablation study 

In the ablation experiments, we conducted two distinct types of an-
alyses, specifically, component ablation and information ablation, as 
illustrated in Table 8. Within the framework of component ablation, a 
series of systematic experiments were executed to elucidate the influ-
ence of various individual components or modules inherent in our 
proposed model. To this end, we rigorously removed or made deliberate 

modifications to designated elements of the model to evaluate their 
respective contributions to the overall performance. By contrasting the 
performance outcomes of these modified versions with the complete 
GCNs-MT model, we were able to glean valuable insights into the effi-
cacy and relative significance of each constituent. In the information 
ablation study, we employed inputs, such as events bereft of structural 
information, user profiles enriched with propagated structural data, and 
user comment features, to gauge their impact on the comprehensive 
performance metrics. The component variant models include the 
following:  

• GCNs-MT w/o GCNs: We remove the graph convolution module and 
feed the pooled features directly into the MT module set. This variant 
will consider the impact on model identification performance when 
graph structure information processing is removed.  

• GCNs-MT w/o MT: This variant model removes the MT module, and 
the hidden embeddings output by the graph convolution layer will be 
directly pooled and fed into the fully connected layers as graph-level 
representations. This variant model serves the purpose of evaluating 
the significance of the proposed MT module in the context of rumor 
detection.  

• GCNs-MT w/o Memory: The variant is a model modification that 
excludes the LSTM cell and reverts the original Transformer 
component. In this variant, the LSTM cell initially responsible for 
retaining global dependencies is removed. In addition, the multiple 
attention mechanism in the converter is replaced by a self-attention 
mechanism.  

• GCNs-MT w/o Transformer: The variant is a model adaptation where 
the Transformer module is excluded from the original model. In this 
variant, the Transformer, which incorporates a multi-head attention 
mechanism, is omitted. This alteration is to assess the impact of 
applying the multi-head attention mechanism within the model. 

The information variant models include the following: 

Table 5 
Comparison of the best performance of the proposed model on the Politifact 
dataset.  

Model Feature Politifact 
Acc. F1 Prec. Rec. 

GCN-MT Profile 0.8009 0.8053 0.8053 0.8053  
Word2Vec 0.8326 0.824 0.7699 0.8878  
BERT 0.8371 0.8235 0.7434 0.8922 

GAT-MT Profile 0.7602 0.7440 0.6814 0.8191  
Word2Vec 0.8507 0.8465 0.8053 0.9231  
BERT 0.8326 0.8279 0.7876 0.8725 

SAGE-MT Profile 0.7783 0.7742 0.7434 0.8077  
Word2Vec 0.8416 0.8341 0.7788 0.8980  
BERT 0.8462 0.8411 0.7965 0.8911  

Table 6 
Comparison of the best performance of the proposed model on the Gossipcop 
dataset.  

Model Feature Gossipcop 
Acc. F1 Prec. Rec. 

GCN-MT Profile 0.9354 0.9360 0.9421 0.9299  
Word2Vec 0.9686 0.9687 0.9703 0.9672  
BERT 0.9712 0.9713 0.9708 0.9718 

GAT-MT Profile 0.9365 0.9382 0.9629 0.9147  
Word2Vec 0.9712 0.9713 0.9729 0.9698  
BERT 0.9773 0.9773 0.9796 0.9751 

SAGE-MT Profile 0.9237 0.9253 0.9442 0.9072  
Word2Vec 0.9712 0.9715 0.9776 0.9655  
BERT 0.9825 0.9825 1.0000 0.9655  

Table 7 
Comparison of the best performance of the proposed model on the Weibo 
dataset.  

Model Feature Weibo 
Acc. F1 Prec. Rec. 

GCN-MT Profile 0.9259 0.9258 0.9269 0.9246  
Word2Vec 0.9743 0.9743 0.9749 0.9737  
BERT 0.9786 0.9787 0.9733 0.9841 

GAT-MT Profile 0.9157 0.9158 0.9167 0.9150  
Word2Vec 0.9789 0.9789 0.9804 0.9774  
BERT 0.9831 0.9832 0.9890 0.9776 

SAGE-MT Profile 0.9243 0.9243 0.9246 0.9241  
Word2Vec 0.9801 0.9801 0.9816 0.9786  
BERT 0.9877 0.9878 0.9890 0.9866  
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• GCNs-MT w/ event: The variant is designed to focus exclusively on 
the event itself as the sole source of information input into the model. 
In contrast to the original model that incorporates various user 
characteristics, this variant intentionally excludes those factors.  

• GCNs-MT w/ profiles: The GCNs-MT w/profiles variant is designed 
to concentrate exclusively on user profile information within net-
works featuring rumor propagation. In this model variant, the 
emphasis is placed on the structure of the propagation network, 

Fig. 4. The performance of the proposed models during training. The solid lines show the trend of model test set accuracy with the training epoch, and the dashed 
lines show the trend of cross-entropy loss with the training epoch. 

Fig. 5. ROC curves with pointwise confidence bounds. The true positive rate and the false positive rate indicate the proportion of samples in which the event is 
actually a rumor and a non-rumor, respectively, that the model is able to correctly identify. 
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where the transmission of user profiles serves as a critical feature 
medium. This variant primarily considers the role of user profiles and 
their influence on rumor propagation within the network.  

• GCNs-MT w/ comments: The variant is designed to exclusively 
consider user comments within network information on social media 
platforms. In this model variant, the primary focus is on the structure 
of the communication network, with user comments serving as the 
essential medium for delivering characteristics and information. This 
model variant places an emphasis on the influence of user comments 
and their subjective opinions on the overall performance of the 
model. 

As depicted in Fig. 6, a series of experiments conducted with the 
building block variants of our model reveal several crucial insights. First, 
the full-fledged GCNs-MT model consistently outperforms the experi-
ments conducted with variants lacking one of the model’s key compo-
nents. This performance underscores the comprehensive nature of our 
proposed method and underscores the indispensability of each individ-
ual construct. Second, when the model is devoid of the MT module, a 
significant drop in performance is observed. In contrast, the absence of 
either a single memory or Transformer module results in a relatively less 
pronounced decline in performance. This finding indicates that both the 
memory and Transformer modules contribute positively to the model’s 
efficacy. Notably, the omission of the memory module has a more sub-
stantial impact, causing precision scores to drop significantly and 

leading to an increased misclassification of non-rumors as rumors. This 
outcome underscores the crucial role played by the generated global 
dependency representations in shaping the model’s classification re-
sults. Furthermore, the absence of graph convolution operations, which 
results in the model lacking access to crucial structural information from 
the network, also exerts a significant adverse effect on the model’s 
performance. This result highlights the pivotal role of propagating 
network structural information in the context of rumor detection. In 
summary, the experiments underscore the comprehensive and interde-
pendent nature of the model’s components, with the MT module, 
memory module, and graph convolution operations each playing a 
unique and vital role in enhancing the model’s performance in rumor 
detection. 

As for the information variant experiments, we can find from the 
results presented in Fig. 7 that utilizing the complete and unaltered 
content of the information source yields more significant and notable 
effects across all three experimental datasets. This observation un-
derscores the importance of comprehensive information when it comes 
to enhancing the model’s performance in rumor screening. Moreover, 
experimenting with using only the event itself as the source of infor-
mation for rumor screening proves to be challenging, with compara-
tively less favorable results. In contrast, methods that leverage network 
structural information perform better, which suggests that, while the 
event itself is a critical component, the model’s ability to harness 
additional contextual and structural information significantly contrib-
utes to its efficacy in rumor detection. It is worth noting that user pro-
files and the content of user comment tweets within the social media 
communication network emerge as vital sources of features. Among 
these, the content of users’ comment tweets regarding the event stands 
out as the second most effective source of information, following the 
complete information source. This result highlights the substantial in-
fluence of user-generated content and commentary on the model’s 
ability to detect rumors effectively. 

5. Conclusion 

The propagation of rumors on social media platforms can have un-
predictable consequences, as the continuity of human civilization relies 
on the dissemination of accurate knowledge and attitudes. Incorrect 
information needs to be detected and corrected. Our proposed approach 
combines the graph convolution operation of GCNs, the structural 
memory of LSTM cells, and the multi-head attention mechanism of the 
Transformer. Through extensive evaluations of Chinese and English 
datasets, GCNs-MT consistently outperforms existing methods, 

Table 8 
Variant models in ablation experiments.  

Component Variant Model Components  
GCNs Memory Transformer 

GCNs-MT w/o GCNs ⨯ ✔ ✔ 
GCNs-MT w/o MT ✔ ⨯ ⨯ 
GCNs-MT w/o Memory ⨯ ✔ ✔ 
GCNs-MT w/o 

Transformer 
✔ ✔ ⨯ 

GCNs-MT ✔ ✔ ✔ 

Information Variant w/o Propagation 
Structures 

w/ Propagation Structures  

Event User 
Profiles 

User 
Comments 

GCNs-MT w/ event ✔ ⨯ ⨯ 
GCNs-MT w/ profiles ✔ ✔ ⨯ 
GCNs-MT w/ 

comments 
✔ ⨯ ✔ 

GCNs-MT ✔ ✔ ✔  

Fig. 6. Experimental performance of component variant models. Compact groups of bars indicate individual variant model results, with x-axis labels indicating 
which specific model they belong to. Different colored bars indicate different evaluation metrics. 
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demonstrating its effectiveness in identifying and combating misinfor-
mation. Our research opens up new avenues for addressing the chal-
lenges posed by false information in online environments. Future studies 
can further explore the potential of GCNs-MT and extend its application 
to other domains related to information dissemination and social media 
analysis. 
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